суббота, 16 июня 2018 г.

Mudança média previsão exemplo excel


Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossas séries temporais. 2. Na guia Dados, clique em Análise de dados. Nota: não consigo encontrar o botão Análise de dados Clique aqui para carregar o complemento Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Intervalo de entrada e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e digite 6. 6. Clique na caixa Escala de saída e selecione a célula B3. 8. Traçar um gráfico desses valores. Explicação: porque definimos o intervalo para 6, a média móvel é a média dos 5 pontos de dados anteriores e o ponto de dados atual. Como resultado, picos e vales são alisados. O gráfico mostra uma tendência crescente. O Excel não pode calcular a média móvel para os primeiros 5 pontos de dados porque não há suficientes pontos de dados anteriores. 9. Repita os passos 2 a 8 para o intervalo 2 e o intervalo 4. Conclusão: quanto maior o intervalo, mais os picos e os vales são alisados. Quanto menor o intervalo, mais perto as médias móveis são para os pontos de dados reais. Adicione uma tendência ou uma linha média móvel a um gráfico Aplica-se a: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mais. Menos Para mostrar tendências de dados ou médias móveis em um gráfico que você criou. Você pode adicionar uma linha de tendência. Você também pode ampliar uma linha de tendência além de seus dados reais para ajudar a prever os valores futuros. Por exemplo, a seguinte linha de tendência linear prevê dois trimestres à frente e mostra claramente uma tendência ascendente que parece promissora para futuras vendas. Você pode adicionar uma linha de tendência a um gráfico 2-D que não está empilhado, incluindo área, barra, coluna, linha, estoque, dispersão e bolha. Você não pode adicionar uma linha de tendência a um gráfico empilhado, 3-D, radar, torta, superfície ou filhós. Adicione uma linha de tendência No seu gráfico, clique na série de dados para a qual deseja adicionar uma linha de tendência ou média móvel. A linha de tendência começará no primeiro ponto de dados da série de dados que você escolher. Verifique a caixa Trendline. Para escolher um tipo diferente de linha de tendência, clique na seta ao lado de Trendline. E depois clique em Exponencial. Previsão linear. Ou a média móvel de dois períodos. Para linhas de tendência adicionais, clique em Mais opções. Se você escolher Mais opções. Clique na opção desejada no painel Format Trendline em Trendline Options. Se você selecionar Polinômio. Insira a maior potência para a variável independente na caixa Ordem. Se você selecionar Moeda em Movimento. Insira o número de períodos a serem usados ​​para calcular a média móvel na caixa Período. Dica: uma linha de tendência é mais precisa quando seu valor R-quadrado (um número de 0 a 1 que revela quão íntimo os valores estimados para a linha de tendência correspondem aos seus dados reais) é em ou próximo de 1. Quando você adiciona uma linha de tendência aos seus dados , O Excel calcula automaticamente o valor R-squared. Você pode exibir esse valor em seu gráfico, verificando o valor Exibir R-quadrado na caixa de gráfico (Formato do painel Trendline, Opções da Tendência). Você pode aprender mais sobre todas as opções de linha de tendência nas seções abaixo. Linha de tendência linear Use este tipo de linha de tendência para criar uma linha reta de melhor ajuste para conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados parecer uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. Uma linha de tendência linear usa essa equação para calcular os mínimos quadrados adequados para uma linha: onde m é a inclinação e b é a intercepção. A linha de tendência linear a seguir mostra que as vendas de refrigeradores aumentaram consistentemente ao longo de um período de 8 anos. Observe que o valor do R-quadrado (um número de 0 a 1 que revela o quão próximo os valores estimados para a linha de tendência correspondem aos seus dados reais) é 0.9792, o que é um bom ajuste da linha para os dados. Mostrando uma linha curvada de melhor ajuste, esta linha de tendência é útil quando a taxa de alteração nos dados aumenta ou diminui rapidamente e depois desacelera. Uma linha de tendência logarítmica pode usar valores negativos e positivos. Uma linha de tendência logarítmica usa essa equação para calcular os mínimos quadrados que se encaixam nos pontos: onde c e b são constantes e ln é a função de logaritmo natural. A seguinte linha de tendência logarítmica mostra o crescimento populacional previsto de animais em uma área de espaço fixo, onde a população se estabilizou à medida que o espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.933, que é um ajuste relativamente bom da linha para os dados. Esta linha de tendência é útil quando seus dados flutuam. Por exemplo, quando você analisa ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Normalmente, uma linha de tendência polinomial da Ordem 2 tem apenas uma colina ou vale, uma Ordem 3 tem uma ou duas colinas ou vales, e uma Ordem 4 tem até três colinas ou vales. Uma linha de tendência polinomial ou curvilínea usa esta equação para calcular os mínimos quadrados que se encaixam nos pontos: onde b e são constantes. A linha de tendência polinomial da ordem 2 (uma colina) mostra a relação entre velocidade de condução e consumo de combustível. Observe que o valor R-squared é 0.979, que é próximo de 1, de modo que as linhas são adequadas aos dados. Mostrando uma linha curva, esta linha de tendência é útil para conjuntos de dados que comparam medidas que aumentam a uma taxa específica. Por exemplo, a aceleração de um carro de corrida em intervalos de 1 segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. Uma linha de tendência de energia usa essa equação para calcular os mínimos quadrados que se encaixam nos pontos: onde c e b são constantes. Nota: Esta opção não está disponível quando os dados incluem valores negativos ou nulos. O gráfico de medidas de distância a seguir mostra a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-squared é 0.986, que é um ajuste quase perfeito da linha para os dados. Mostrando uma linha curva, esta linha de tendência é útil quando os valores de dados aumentam ou caem a taxas cada vez maiores. Você não pode criar uma linha de tendência exponencial se seus dados contiverem valores zero ou negativos. Uma linha de tendência exponencial usa esta equação para calcular os mínimos quadrados que se encaixam nos pontos: onde c e b são constantes e e é a base do logaritmo natural. A seguinte linha de tendência exponencial mostra a quantidade decrescente de carbono 14 em um objeto à medida que envelhece. Observe que o valor R-quadrado é 0.990, o que significa que a linha se encaixa perfeitamente nos dados. Tendência média média Esta linha de tendência eleva as flutuações nos dados para mostrar um padrão ou tendência com mais clareza. Uma média móvel usa um número específico de pontos de dados (definido pela opção Período), os em média e usa o valor médio como um ponto na linha. Por exemplo, se o Período for definido como 2, a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, etc. Uma linha de tendência média móvel usa essa equação: O número de pontos em uma linha de tendência média móvel é igual ao número total de pontos da série, menos a Número que você especificou para o período. Em um gráfico de dispersão, a linha de tendência é baseada na ordem dos valores de x no gráfico. Para obter um resultado melhor, classifique os valores x antes de adicionar uma média móvel. A seguinte linha de tendência média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas. Na prática, a média móvel proporcionará uma boa estimativa da média das séries temporais se a média for constante ou se mudar lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo significará os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série temporal usada para ilustração juntamente com a demanda média da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ela aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então, torna-se constante novamente. Os dados são simulados adicionando à média, um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que em qualquer momento, apenas os dados passados ​​são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas em conjunto com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas médias móveis para a direita por períodos. Uma conclusão é imediatamente aparente da figura. Para as três estimativas, a média móvel está atrasada por trás da tendência linear, com o atraso crescente com m. O atraso é a distância entre o modelo e a estimativa na dimensão temporal. Por causa do atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um momento específico no valor médio do modelo e o valor médio previsto pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e tendência do estimador da média são dados nas equações abaixo. As curvas de exemplo não combinam essas equações porque o modelo de exemplo não está aumentando continuamente, antes ele começa como uma constante, muda para uma tendência e depois se torna constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada pela mudança das curvas para a direita. O atraso e o desvio aumentam proporcionalmente. As equações abaixo indicam o atraso e a polarização de um período de previsão para o futuro em relação aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel é baseado na suposição de uma média constante, e o exemplo tem uma tendência linear na média durante uma parcela do período de estudo. Uma vez que as séries em tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para esses resultados. Também podemos concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menores. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero e a variância do erro é composta por um termo que é uma função e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de observações m, assumindo que os dados provêm de uma população com um meio constante. Este termo é minimizado fazendo m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar as previsões sensíveis às mudanças, queremos m o mais pequeno possível (1), mas isso aumenta a variação do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo suplemento para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Comparadas com a tabela acima, os índices do período são deslocados em -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro médio móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto feito a partir da média móvel no tempo 0 é 11,1. O erro então é -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente.

Комментариев нет:

Отправить комментарий